jueves, 10 de abril de 2008

AMINOACIDOS

Estructura básica de un aminoácido


Un aminoácido es una biomolécula orgánica formada por un carbono unido a un grupo carboxil, un grupo amino, un hidrógeno y una cadena R de composición variable según la cual se conocen 20 tipos de aminoácidos diferentes. En los aminoácidos naturales, el grupo amino y el grupo carboxil se unen al mismo carbono que recibe el nombre de alfa asimétrico...
Unión de varios aminoácidos da lugar a cadenas llamadas péptidos. Se hablará de proteína cuando la cadena polipeptídica supere los 50 aminoácidos o el peso molecular total supero los 5000. Existen aproximadamente 20 aminoácidos distintos componiendo las proteínas. La unión química entre aminoácidos en las proteínas se produce mediante un enlace peptídico. Ésta reacción ocurre de manera natural en los ribosomas, tanto del retículo endoplasmático como del citosol.






Estructura general de un aminoácido
La estructura general de un aminoácido se establece por la presencia de un carbono central unido a: Un grupo carboxilo (rojo), un grupo amino (verde), un hidrogeno (negro) y la cadena lateral (azul), tal como se muestra a continuación:

Donde "R" representa la cadena lateral, específica para cada aminoácido. Técnicamente hablando, se les denomina Alfa-aminoácidos, debido a que el grupo amino (NH2) se encuentra a un atomo de distancia del grupo carboxilo (COOH). Como estos dos grupos poseen H en sus estructuras químicas, son grupos susceptibles a los cambios de pH, por eso, en el pH de la célula, prácticamente ningún aminoácido se encuentra de esa forma, sino que se encuentra ionizado.

Los aminoácidos a pH bajo se encuentran mayoritariamente en su forma catiónica (con carga positiva), y a pH alto se encuentran en su forma aniónica (con carga negativa). Sin embargo, existe un pH especifico para cada aminoácido, donde la carga positiva y la carga negativa se encuentran en equilibrio, vale decir, en un estado neutro. En éste estado se dice que el aminoácdio se encuentra en su forma de Zwitterion.

Clasificación



Existen muchas formas de clasificar los aminoacidos, las dos formas que se presentan a continuacion son las mas comunes.

Según las propiedades de su cadena

Otra forma de clasificar los aminoacidos de acuerdo a su cadena lateral.
Los aminoácidos se clasifican habitualmente según las propiedades de su cadena lateral:
Neutros polares, polares o hidrófilos : Serina (Ser), Treonina (Thr), Cisteína (Cys), Asparagina (Asn), Tirosina (Tyr) y Glutamina (Gln).
Neutros no polares, apolares o hidrófobos: Glicina (Gly), Alanina (Ala), Valina (Val), Leucina (Leu), Isoleucina (Ile), Metionina (Met), Prolina (Pro), Fenilalanina (Phe) y Triptófano (Trp).
Con carga negativa, o ácidos: Ácido aspártico (Asp) y Ácido glutámico (Glu).
Con carga positiva, o básicos: Lisina (Lys), Arginina (Arg) e Histidina (His).
Aromáticos: Fenilalanina (Phe), Tirosina (Tyr) y Triptofano (Trp)

Según su obtención
A los aminoácidos que necesitan ser ingeridos por el cuerpo para obtenerlos se les llama esenciales, la carencia de estos aminoácidos en la dieta limita el desarrollo del organismo, ya que no es posible reponer las células de los tejidos que mueren o crear tejidos nuevos, en el caso del crecimiento. Estos son:
Valina (Val)
Leucina (Leu)
Isoleucina (Ile)
Fenilalanina (Phe)
Metionina (Met)
Treonina (Thr)
Lisina (Lys)
Triptófano (Trp)
Histidina (His)
Arginina (Arg)
A los aminoácidos que pueden ser sintetizados por el cuerpo se les conoce como No Esenciales y son:
Alanina (Ala)
Prolina (Pro)
Glicina (Gly)
Serina (Ser)
Cisteina (Cys)
Asparagina (Asn)
Glutamina (Gln)
Tirosina (Tyr)
Ácido aspártico (Asp)
Ácido glutámico (Glu)
Los datos actuales, en cuanto a numero de aminoacidos (aa) y de enzimas de ARNt sintetasas, contradicen hasta el momento, puesto que se ha comprobado que existen 22aa distintos que intervienen en la composicion de las cadenas polipeptidicas y que las enzimas ARNt sintetasas que no son siempre exclusivas para cada aa. El aa numero 21 es la SELENOCISTINA que aparece en eucariotas y procariotas y el numero 22 la PIRROLISINA, que aparece solo en procariotas.

Aminoácidos no proteicos
Hay aminoácidos que no se consideran proteicos y aparecen en algunas proteínas. Son derivados de otros aminoácidos, es decir, se incorporan a la proteína como uno de los aminoácidos proteicos y, después de haber sido formada la proteína, se modifican químicamente; por ejemplo, la hidroxiprolina.
Algunos aminoácidos no proteicos se utilizan como neurotransmisores, vitaminas, etc. Por ejemplo, la beta-alanina o la biotina.

Propiedades [editar]
Ácido-básicas.
Comportamiento de cualquier aminoácido cuando se ioniza. Cualquier aminoácido puede comportarse como ácido y como base, se denominan sustancias anfóteras.
Cuando una molécula presenta carga neta cero está en su punto isoeléctrico. Si un aminoácido tiene un punto isoeléctrico de 6,1 a este valor de pH su carga neta será cero
Los aminoácidos y las proteínas se comportan como sustancias tampón.
Ópticas.
Todos los aminoácidos excepto la glicina, tienen el carbono alfa asimétrico lo que les confiere actividad óptica; esto es, que desvian el plano de polarización cuando un rayo de luz polarizada se refracta en la molécula. Si el plano es a la derecha, se denominarán dextrógiras y las que lo desvian a la izquierda se denominan levógiras. Además, cada aminoácido puede presentar configuración D o L dependiendo de la posicion del grupo amino en el plano. Esta última configuracion D o L es independiente de las formas dextrógira o levógira.
Según el isómero, desviará el rayo de luz polarizada hacia la izquierda (levógiro) o hacia la derecha (dextrógiro) el mismo número de grados que su esteroisómero. El hecho de que sea dextrógiro no quiere decir que tenga configuración D. La configuración D o L depende de la posición del grupo amino (L si está a la izquierda según la representación de Fisher)
Químicas.
Las que afectan al grupo carboxilo (descarboxilación).
Las que afectan al grupo amino (desaminación).
Las que afectan al grupo R.

Aminoácidos codificados en el genoma



Los aminoácidos que están codificados en el genoma de la mayoría de los seres vivos son 20: alanina, arginina, asparagina, aspartato, cisteína, fenilalanina, glicina, glutamato, glutamina, histidina, isoleucina, leucina, lisina, metionina, prolina, serina, tirosina, treonina, triptófano y valina.
Sin embargo, hay algunas pocas excepciones. En algunos seres vivos el código genético tiene pequeñas modificaciones y puede codificar otros aminoácidos

SAPONIFICACION

Saponificación de un lípido
La saponificación es una reacción química entre un ácido graso (o un lípido saponificable, portador de residuos de ácidos grasos) y una base o álcali, en la que se obtiene como principal producto la sal de dicho ácido y la base. Estos compuestos tienen la particularidad de ser anfipáticos, es decir tienen una parte polar y otra apolar (o no polar), con lo cual pueden interactuar con sustancias de propìedades dispares. Por ejemplo, los jabones son sales de ácidos grasos y metales alcalinos que se obtienen mediante saponificación.
El método de saponificación industrial consiste en hervir la grasa en grandes calderas, añadiendo lentamente sosa cáustica (NaOH), agitandose continuamente la mezcla hasta que comienza esta a ponerse pastosa.
La reacción que tiene lugar es la saponificación y los productos son el jabón y la lejía residual que contiene glicerina:
Grasa + sosa = jabón + glicerina + lejía (agua y sosa)
Un lípido saponificable sería todo aquel que esté compuesto por un alcohol unido a uno o varios ácidos grasos (iguales o distintos). Esta unión se realiza mediante un enlace éster, muy difícil de hidrolizar. Pero puede romperse fácilmente si el lípido se encuentra en un medio básico. En este caso se produce la saponificación alcalina. En los casos en los que para la obtención del jabón se utiliza un glicérido o grasa neutra, se obtiene como subproducto el alcohol llamado glicerina, que puede dar mayor beneficio económico que el producto principal.
En el ejemplo de arriba una molécula de un lípido es tratada con dos de hidróxido de potasio; se obtienen dos moléculas de palmitato de potasio (un jabón) y una de glicerina.
La acción limpiadora del jabón se debe a su poder emulsionante, esto es, su habilidad para suspender en agua sustancias que normalmente no se disuelven en agua pura. La cadena hidrocarbonada (parte hidrofóbica) de la sal (el jabón), tiene afinidad por sustancias no polares, tales como las grasas de los alimentos. El grupo carboxilato (parte hidrofílica) de la molécula tiene afinidad por el agua.
En la solución de jabón, los iones carboxilato rodean a las gotas de grasa: sus partes no polares se ubican (disuelven) hacia adentro, mientras que los grupos carboxilatos se ordenan sobre la superficie externa. Así, reducidas a volúmenes muy pequeños, las gotas pueden asociarse con las moléculas de agua y se facilita la dispersión de la grasa. Estas pequeñas gotas que contienen las partículas no polares rodeadas de anoiones carboxilato se denominan micelas. Es la presencia de estos aniones carboxilato la que hace que las superficies de las micelas estén cargadas negativamente y se repelan entre sí, impidiendo la coalescencia y manteniendo la emulsión, es decir la dispersión en gotas muy finas.

ACIDO-BASE

OBJETIVO.
Identificar los factores que intervienen en una persona al ingerir bicarbonato y aquellas que no ingieren pero hacen ejercicio, y como el cuerpo por medio de la orina se lleva acabo acido-base.
INTRODUCCION
Hemos de recordar que, en términos generales, cuando el trastorno primario es metabólico (renal), la compensación es respiratoria y se produce inmediatamente. Por el contrario, cuando la alteración primaria es de origen respiratorio, la compensación es metabólica y los mecanismos renales que se ponen en marcha requieren varios días para llevar a cabo dicha compensación.
Un amortiguador ácido-básico es una solución de dos o más compuestos químicos que evita la producción de cambios intensos en la concentración de iones hidrógeno cuando a dicha solución se le añade un ácido o una base. Un buen ejemplo de estos sistemas es el formado por el ácido carbónico y el bicarbonato sódico cuando ambos se encuentran en una misma solución. En primer lugar, conviene recordar que el ácido carbónico es un ácido muy débil y que cuando se encuentra en una solución, aproximadamente 999 partes de cada 1.000 se disocian en dióxido de carbono y agua, con el resultado final de una elevada concentración de dióxido de carbono disuelto más una pequeña concentración de ácido.
Cuando a una solución que contiene bicarbonato sódico se le añade un ácido como el clorhídrico, ocurre la siguiente reacción:
Puede observarse cómo un ácido fuerte - el clorhídrico - es convertido en otro muy débil - el carbónico -, por lo que la adición de ese ácido fuerte sólo bajarla ligeramente el pH de la solución.
De la misma forma, si añadimos una base fuerte, como el hidróxido sódico, a una solución que contiene ácido carbónico, tendrá lugar la siguiente reacción:
NaOH + H2CO3 à NaHCO3 + H2O
Donde observamos que el ion del hidróxido sódico se combina con el ion hidrógeno del ácido carbónico para producir agua, formando, además, bicarbonato sódico. El resultado neto del sistema tampón es la transformación de la base fuerte (NaOH) por la base débil (NaHCO3 ).
Aunque para ilustrar el funcionamiento del sistema tampón hemos utilizado el ácido carbónico y el bicarbonato sódico, cualquier sal de bicarbonato, aparte del sódico, puede efectuar exactamente la misma función. Por tanto, las pequeñas cantidades de bicarbonato potásico, bicarbonato cálcico y bicarbonato magnésico que existen en los líquidos extracelulares son igualmente eficaces para el sistema tampón del bicarbonato. En el liquido intracelular hay muy poco bicarbonato sódico, y el ion bicarbonato es proporcionado por el bicarbonato potásico y magnésico.
Existen otros sistemas tampón en el organismo que, aunque con menos intensidad que el que acabamos de describir, también contribuyen a mantener estable el pH. Esos sistemas son el fosfato y las proteínas.
Mediante la aplicación de la ecuación de Henderson-Hasselbalch podemos deducir que en un individuo normal, con un pH de 7,4, la relación existente entre el bicarbonato y el asido carbónico es de 20:1, y el organismo tratará de corregir cualquier alteración de esta relación para mantener la estabilidad de este equilibrio.
Para estudiar el equilibrio ácido-básico de un paciente debemos medir por lo menos dos de estos tres parámetros: pH, pCO2 y HCO-3, obteniéndose el restante mediante un cálculo matemático (actualmente los analizadores de gases miden pH y pCO2 y calculan HCO-3).

MATERIALES

.
· 5 PROBETAS 100 ML.
· 5 Vasos de precipitados 250
· AGUA
· BICARBONATO DE SODIO
· TIRAS REACTIVAS DE ORINA

PROCEDIMIENTO
1. tomar 500 ml. De agua 30 min. Antes de llevar acabo la prueba y recolectarlo en el vaso de precipitados la orina y anotar el ph inicial iniciando la practica.
2. Se toma 200 ml. De bicarbonato de sodio y cada 15 minutos ir al baño a recolectar la orina y medir su ph.
3. Pasando los 15 min. Seguir iendo a baño hasta cumplir 5 sesiones de 15 min.
resultados


DISCUSIÓN

El CO2 y, consiguientemente el ácido carbónico, cuya concentración es controlada por los pulmones, se denominan de forma genérica componente respiratorio, mientras que el bicarbonato, que es controlado por los riñones, recibe el nombre genérica de componente metabólico o renal.
En condiciones normales, tanto los pulmones como los riñones son capaces de aumentar o disminuir el nivel de sus respectivos constituyentes tampón para alcanzar el objetivo primario; es decir, la relación 20:1, que es esencial para mantener el pH normal de la sangre.
En la acidosis metabólica el riñón no elimina el exceso de iones hidrógeno y no recupera una cantidad suficiente de bicarbonato. Un nivel disminuido de bicarbonato en presencia de una pCO2 normal produce unta disminución de la relación entro el bicarbonato y el ácido carbónico (menos de 20:1), por lo que ocasiona una reducción del pH. Algunas causas de esta alteración son la cetosis diabética, la intoxicación ácida (por ejemplo, el ácido acetilsalicilico) y la acidosis láctica por sobrecarga muscular. En todas estas situaciones el organismo tiende a reponer la relación normal de 20:1 entre el bicarbonato y el ácido carbónico. A este proceso lo conocemos como compensación. En la acidosis metabólica los pulmones tienden a compensar eliminando cantidades mayores de CO2, hiperventilando. Al reducir la pCO2, como el bicarbonato está bajo por la alteración primaria, se tiende a restablecer la relación 20:1 entre el bicarbonato y el ácido carbónico y, en consecuencia, el pH se desplaza hacia la normalidad. Fisiológicamente, la compensación nunca es completa.
La alcalosis metabólica se caracteriza por la presencia de bicarbonato en exceso y puede producirse como consecuencia del agotamiento del ácido en el organismo o de la ingestión de un exceso de base. En estas condiciones, un nivel aumentado de bicarbonato se asocia a una pCO2 normal y el resultado es un aumento en la relación bicarbonato / ácido carbónico, lógicamente con la elevación del pH sistémico. Algunas causas de este trastorno son los vómitos persistentes, el lavado gástrico, el exceso de medicación diurética y la ingestión desordenada de sustancias alcalinas. En todos estos casos el sistema reaccionará para restablecer el equilibrio entre bases y ácidos y normalizar el pH. El centro de control respiratorio inducirá una hipoventilación con retención de CO2 y, por tanto, de nuevo se compensa el aumento del bicarbonato con aumento de la pCO2.
La acidosis respiratoria se caracteriza por la incapacidad de los pulmones para eliminar todo el CO2 producido por el organismo, por lo que la pCO2 aumenta y la existencia de un nivel normal de bicarbonato produce una disminución en la relación bicarbonato / ácido carbónico. Algunas causas de esta alteración son la enfermedad broncopulmonar, intoxicación por barbitúricos, respiración asistida mal estimada y asfixia. La compensación, en este caso, se producirá porque el riñón eliminará una mayor cantidad de H+ causando, de este modo, un incremento del bicarbonato.
Por último, la alcalosis respiratoria se caracteriza por una eliminación excesiva de CO2 a través de los pulmones. De nuevo, la reducción de la pCO2 con niveles normales de bicarbonato aumenta la relación entre bases y ácidos, por lo que se eleva el pH. Las causas más frecuentes de este trastorno son los estados de ansiedad, fiebre alta, anoxia e intoxicación por ciertos fármacos. En este caso, la compensación la establecen los riñones, reduciendo la producción de bicarbonato.


CONCLUSION
El cuerpo esta especializado en no permitir que el cuerpo muera, asi es, en el caso de un incremento de ph el cuerpo se programa para poder solventar esas carencias o desperfectos que al cuerpo le aquejan e intervienen muchas partes para poder estabilizar o erradicar ese mal funcionamiento que se esta dando. Dentro de los reguladores de ph encontramos al bicarbonato de sodio que es un amortiguador (acido-base) que al carecer esta el ph de la sangre se basifica y al aumento de este se acidifica.

En las personas que ingirieron bicarbonato de sodio y el análisis de cada 15 min. De su orina hubo en todas una pequeña variación de +/- 1 encontrandose en 6 lo cual explico que la cantidad de bicarbonato fue menor y que el cuerpo a ciertas sustancias reacciona efectivamente regulando el ph.


Las personas que no ingirieron bicarbonato e hicieron ejercicio, al igual que las personas que tomaron bicarbonato su ph variaba +/- 1 en el inicial encontrándose inicialmente en 6. Cuando se hace ejercicio hay una gasto de energía aerobia por tanto se libera poca cantidad de CO2 por una hiperventilación al correr y entra una gran cantidad de O2 lo cual hace que el el amortiguado en este caso el bicarbonato del cuerpo disminuye por la regulación del ph y hace que incremente el ph dando una ligera basificacion.


BIBLIOGRAFIA

· BIOQUIMICA, LEHNINGER
· MANUEL PACHECO LENAN,BIOQUIMICA MEDICA, ACIDO-BASES, PAG. 82-90, EDIT. LIMUSA, 2005, MEXICO D.F.
· BIOQUÍMICA, JUAN C DIAZ ZAGOYA Y MARCO A. JUAREZ OROPEZA
· http://www.unalmed.edu.co/paucar/acido-base.htm

miércoles, 9 de abril de 2008

PROTEINA

Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios proteo, por la cantidad de formas que pueden tomar.

Características
Las proteínas son moléculas de enorme tamaño; pertenecen a la categoría de macromoléculas; son polímeros, es decir, están constituidas por gran número de unidades estructurales simples repetitivas (monómeros). Debido a su gran tamaño, cuando estas moléculas se dispersan en un disolvente adecuado, forman siempre dispersiones coloidales, con características que las distinguen de las soluciones de moléculas más pequeñas.
Por hidrólisis, las moléculas proteínicas son escindidas en numerosos compuestos relativamente simples, de pequeño peso, que son las unidades fundamentales constituyentes de la macromolécula. Estas unidades son los aminoácidos, de los cuales existen veinte especies diferentes y que se unen entre sí mediante enlaces peptídicos. Cientos y miles de estos aminoácidos pueden participar en la formación de la gran molécula polimérica de una proteína.
Todas las proteínas contienen carbono, hidrógeno, oxígeno y nitrógeno y casi todas poseen también azufre. Si bien hay ligeras variaciones en diferentes proteínas, el contenido de nitrógeno representa, término medio, 16% de la masa total de la molécula; es decir, cada 6,25 g de proteínas contienen 1 g de N. El factor 6,25 se utiliza para estimar la cantidad de proteína existente en una muestra a partir de la medición de N de la misma.
La síntesis proteica es un proceso complejo cumplido por las células según las directrices de la información suministrada por los genes.

Funciones

Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomolécula]s. Prácticamente todos los procesos biológicos dependen de la presencia y/o actividad de este tipo de sustancias. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de funciones a ellas asignadas. Son proteínas casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes; muchas hormonas, reguladores de actividades celulares; la hemoglobina y otras moléculas con funciones de transporte en la sangre; los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños; los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada; la actina y la miosina, responsables finales del acortamiento del músculo durante la contracción; el colágeno, integrante de fibras altamente resistentes en tejidos de sostén.


Estructura de las proteínas


Presentan una disposición característica en condiciones ambientales, si se cambia la presión, temperatura, pH, etc. pierde la conformación y su función. La función depende de la conformación y ésta viene determinada por la secuencia de aminoácidos.
Conformaciones o niveles estructurales de la disposición tridimensional: Estructura primaria. Estructura secundaria. Nivel de dominio. Estructura terciaria. Estructura cuaternaria. A partir del nivel de dominio sólo las hay globulares.

Propiedades de las proteínas
Solubilidad: Esta propiedad se mantiene siempre y cuando los enlaces fuertes y débiles estén presentes. Si se aumenta la temperatura y el pH, se pierde la solubilidad.
Capacidad Electrolítica: Se determina a través de la electrólisis, en la cual si las proteínas se trasladan al polo positivo es porque su radical tiene carga negativa y viceversa.
Especificidad: Cada proteína tiene una función específica que esta determinada por su estructura primaria.
Desnaturalización: Las proteínas pueden desnaturalizarse al perder su estructura terciaria. Al desnaturalizarse una proteína, esta pierde solubilidad en el agua y precipita. La desnaturalización se produce por cambios de temperatura o variaciones de pH. En algunos casos, las proteínas desnaturalizadas pueden volver a su estado original a través de un proceso llamado renaturalización.

Determinación de la estabilidad proteica
La estabilidad de una proteína es una medida de la energía que diferencia al estado nativo de otros estados "no nativos" o desnaturalizados. Hablaremos de estabilidad termodinámica cuando podamos hacer la diferencia de energía entre el estado nativo y el desnaturalizado, para lo cual se requiere reversibilidad en el proceso de desnaturalización. Y hablaremos de estabilidad cinética cuando, dado que la proteína desnaturaliza irreversiblemente, sólo podemos diferenciar energéticamente la proteína nativa del estado de transición (el estado limitante en el proceso de desnaturalización) que da lugar al estado final. En el caso de las proteínas reversibles, también se puede hablar de estabilidad cinética, puesto que el proceso de desnaturalización también presenta un estado limitante. Actualmente se ha demostrado que algunas proteínas reversibles pueden carecer de dicho estado limitante, si bien es un tema aún controvertido en la bibliografía científica.
La determinación de la estabilidad proteica puede realizarse con diversas técnicas. La única de ellas que mide directamente los parámetros energéticos es la calorimetría (normalmente en la modalidad de calorimetría diferencial de barrido). En esta se mide la cantidad de calor que absorbe una disolución de proteína cuando es calentada, de modo que al aumentar la temperatura se produce una transición entre el estado nativo y el estado desnaturalizado que lleva asociada la absorción de una gran cantidad de calor.
El resto de técnicas miden propiedades de las proteínas que son distintas en el estado nativo y en el estado desplegado. Entre ellas se podrían citar la fluorescencia de triptófanos y tirosinas, el dicroismo circular, radio hidrodinámico, espectroscopía infrarroja, resonancia magnética nuclear,... Una vez hemos elegido la propiedad que vamos a medir para seguir la desnaturalización de la proteína, podemos distinguir dos modalidades: Aquellas que usan como agente desnaturalizante el incremento de temperatura y aquellas que hacen uso de agentes químicos (como urea, cloruro de guanidinio, tiocianato de guanidinio, alcoholes,...). Estas últimas relacionan la concentración del agente utilizado con la energía necesaria para la desnaturalización. Una de las últimas técnicas que han emergido en el estudio de las proteínas es la microscopía de fuerza atómica. Esta técnica es cualitativamente distinta de las demás, puesto que no trabaja con sistemas macroscópicos sino con moléculas individuales. Mide la estabilidad de la proteína a través del trabajo necesario para desnaturalizarla cuando se aplica una fuerza por un extremo mientras se mantiene el otro extremo fijo a una superficie.
La importancia del estudio de la estabilidad proteica está en sus implicaciones biomédicas y biotecnológicas. Así, enfermedades como el Alzheimer o el Parkinson están realcionadas con la formación de amiloides (polímeros de proteínas desnaturalizadas). El tratamiento eficaz de estas enfermedades podría encontrarse en el desarrollo de fármacos que desestabilizaran las formas amiloidogénicas o bien que estabilizaran las formas nativas. Por otro lado, cada vez más proteínas van siendo utilizadas como fármacos. Resulta obvio que los fármacos deben presentar una estabilidad que les de un alto tiempo de vida cuando están almacenados y un tiempo de vida limitado cuando están realizando su acción en el cuerpo humano. En cuanto a la importancia en las aplicaciones biotecnológicas radica en que pese a su extrema eficacia catalítica su baja estabilidad dificulta su uso (muchas proteínas de potencial interés apenas mantienen su configuración nativa y funcional por unas horas).

Clasificación

Según su forma
Fibrosas: presentan cadenas polipéptidas largas y una atípica estructura secundaria. Son insolubles en agua y en soluciones acuosas. Algunos ejemplos de estas son la queratina, colágeno y fibrina
Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta. La mayoría de las enzimas, anticuerpos, algunas hormonas, proteínas de transporte, son ejemplo de proteínas globulares y también poseen aminoopeptidiosis al 5% para hacer simbiosis.

Según su composición química
Simples u holoproteínas: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (fibrosas y globulares).
Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas llamado grupo prostético (sólo globulares)

CICLO DE KREBS


LIPIDOS

Lípido


Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofóbicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, aunque las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).


Características generales

Los lípidos son biomoléculas muy diversas; unos están formados por cadenas alifáticas saturadas o insaturadas, en general lineales, pero algunos tienen anillos (aromáticos). Algunos son flexibles, mientras que otros son rígidos o semiflexibles hasta alcanzar casi una total flexibilidad molecular; algunos comparten carbonos libres y otros forman puentes de hidrógeno.
La mayoría de los lípidos tiene algún tipo de carácter polar, además de poseer una gran parte apolar o hidrofóbico ("que le teme al agua" o "rechaza al agua"), lo que significa que no interactúa bien con solventes polares como el agua. Otra parte de su estructura es polar o hidrofílica ("que ama el agua" o "que tiene afinidad por el agua") y tenderá a asociarse con solventes polares como el agua. Esto los hace moléculas anfipáticas (que tienen porciones hidrofóbicas e hidrofílicas). En el caso del colesterol, el grupo polar es sólo un –OH (hidroxilo o alcohol). En el caso de los fosfolípidos, los grupos polares son considerablemente más largos y más polares.

Clasificación biológica
Los lípidos son un grupo muy heterogéneo que usualmente se clasifican en dos grupos, atendiendo a que posean en su composición ácidos grasos (lípidos saponificables) o no lo posean (lípidos insaponificables).
Lípidos saponificables
Simples. Lípidos que sólo contienen carbono, hidrógeno y oxígeno.
Acilglicéridos. Cuando son sólidos se les llama grasas y cuando son líquidos a temperatura ambiente se llaman aceites.
Céridos (ceras)
Complejos. Son los lípidos que además de contener en su molécula carbono, hidrógeno y oxígeno, también contienen otros elementos como nitrógeno, fósforo, azufre u otra biomolécula como un glúcido. A los lípidos complejos también se les llama lípidos de membrana pues son las principales moléculas que forman las membranas celulares.
Fosfolípidos
Fosfoglicéridos
Fosfoesfingolípidos
Glucolípidos
Cerebrósidos
Gangliósidos
Lípidos insaponificables
Terpenoides
Esteroides
Eicosanoides

Lípidos saponificables

Ácidos grasos

Estructura 3D del ácido linoleico, un tipo de ácido graso. En rojo se observa la cabeza polar correspondiente a un grupo carboxilo.
Son las unidades básicas de los lípidos saponificables, y consisten en moléculas formadas por una larga cadena hidrocarbonada con un número par de átomos de carbono (12-22) y un grupo carboxilo terminal. La presencia de dobles enlaces en el ácido graso reduce el punto de fusión. Los ácidos grasos se dividen en saturados e insaturados.
Saturados (ácidos láurico, mirístico, palmítico, esteárico, araquídico y lignogérico).
Insaturados (ácidos palmitoleico, oleico, linoleico, linolénico y araquidónico).
Los denominados ácidos grasos esenciales no pueden ser sintetizados por el organismo humano y son el ácido linoleico, el ácido linolénico y el ácido araquidónico, que deben ingerirse en la dieta.

Propiedades físicoquímicas

Carácter Anfipático. Ya que el ácido graso esta formado por un grupo carboxilo y una cadena hidrocarbonada, esta última es la que posee la característica hidrófoba; siendo responsable de su insolubilidad en agua.
Punto de fusión: Depende de la longitud de la cadena y de su número de insaturaciones, siendo los ácidos grasos insaturados los que requieren menor energía para fundirse.
Esterificación. Los ácidos grasos pueden formar ésteres con grupos alcohol de otras moléculas
Saponificación. Por hidrólisis alcalina los ésteres formados anteriormente dan lugar a jabones (sal del ácido graso)
Autooxidación. Los ácidos grasos insaturados pueden oxidarse espontáneamente, dando como resultado aldehídos donde existían los dobles enlaces covalentes.

Acilglicéridos

Representación tridimensional de un triglicérido
Artículo principal: Acilglicérido
Los acilglicéridos son ésteres de ácidos grasos con glicerol (glicerina), formados mediante una reacción de condensación llamada esterificación. Una molécula de glicerol puede reaccionar con hasta tres moléculas de ácidos grasos, puesto que tiene tres grupos hidroxilo.
Según el número de ácidos grasos que se unan a la molécula de glicerina, existen tres tipos de acilgliceroles:
Monoglicéridos. Sólo existe un ácido graso unido a la molécula de glicerina.
Diacilglicéridos. La molécula de glicerina se une a dos ácidos grasos.
Triacilglicéridos. Llamados comúnmente triglicéridos, puesto que la glicerina está unida a tres ácidos grasos; son los más importantes y extendidos de los tres.
Los triglicéridos constituyen la principal reserva energética de los animales, en los que constituyen las grasas; en los vegetales constituyen los aceites. El exceso de lípidos es almacenado en grandes depósitos en el tejido adiposo de los animales.

Céridos
Artículo principal: Cérido
Las ceras son moléculas que se obtienen por esterificación de un ácido graso con un alcohol monovalente lineal de cadena larga. Por ejemplo la cera de abeja. Son sustancias altamente insolubles en medios acuosos y a temperatura ambiente se presentan sólidas y duras. En los animales las podemos encontrar en la superficie del cuerpo, piel, plumas, cutícula, etc. En los vegetales, las ceras recubren en la epidermis de frutos, tallos, junto con la cutícula o la suberina, que evitan la pérdida de agua por evaporación.

Fosfolípidos
Artículo principal: Fosfolípido
Los fosfolípidos se caracterizan por poseer un grupo fosfato que les otorga una marcada polaridad. Se clasifican en dos grupos, según posean glicerol o esfingosina.

Fosfoglicéridos

Estructura de un fosfoglicérido; X representa el alcohol o aminoalcohol que se esterifica con el grupo fosfato; el resto representa el ácido fosfatídico
Artículo principal: Fosfoglicérido
Los fosfoglicéridos están compuestos por ácido fosfatídico, una molécula compleja compuesta por glicerol, al que se unen dos ácidos grasos (uno saturado y otro insaturado) y un grupo fosfato; el grupo fosfato posee un alcohol o un aminoalcohol, y el conjunto posee una marcada polaridad y forma lo que se denomina la "cabeza" polar del fosfoglicérido; los dos ácidos grasos forman las dos "colas" hidrófobas; por tanto, los fosfoglicéridos son moléculas con un fuerte carácter anfipático que les permite formar bicapas, que son la arquitectura básica de todas las membranas biológicas.
Los principales alcoholes y aminoalcoholes de los fosfoglicéridos que se encuentran en las membranas biológicas son la colina (para formar la fosfatidicolina o lecitina), la etanolamina (fosfatidiletanolamina o cefalina), serina (fosfatidilserina) y el inositol (fosfatidilinositol).

Fosfoesfingolípidos

Imagen en 3D de la molécula de la esfingosina
Artículo principal: Esfingolípido
Los fosfoesfingolípidos son esfingolípidos con un grupo fosfato, tienen una arquitectura molecular y unas propiedades similares a los fosfoglicéridos. No obstante, no contienen glicerol, sino esfingosina, un aminoalcohol de cadena larga al que se unen un ácido graso, conjunto conocido con el nombre de ceramida; a dicho conjunto se le une un grupo fosfato y a éste un aminoalcohol; el más abundante es la esfingomielina, en la que el ácido graso es el ácido lignocérico y el aminoalcohol la colina; es el componente principal de la vaina de mielina que recubre los axones de las neuronas.

Glucolípidos
Artículo principal: Glucolípido
Los glucolípidos son esfingolípidos formados por una ceramida (esfingosina + ácido graso) unida a un glúcido, careciendo, por tanto, de grupo fosfato. Al igual que los fosfoesfingolípidos poseen ceramida, pero a diferencia de ellos, no tienen fosfato ni alcohol. Se hallan en las bicapas lipídicas de todas las membranas celulares, y son especialmente abundantes en el tejido nervioso; el nombre de los dos tipos principales de glucolípidos alude a este hecho:
Cerebrósidos. Son glucolípidos en los que la ceramida se une un monosacárido (glucosa o galactosa) o a un oligosacárido.
Gangliósidos. Son glucolípidos en los que la ceramida se une a un oligosacárido complejo en el que siempre hay ácido siálico.
Los glucolípidos se localizan en la cara externa de la bicapa de las membranas celulares donde actúan de receptores.

Lípidos insaponificables

Terpenoides
Artículo principal: Terpenoide
Los terpenoides, terpenos o isoprenoides, son lípidos derivados del hidrocarburo isopreno (o 2-metil-1,3-butadieno). Los isoprenoides biológicos constan, como mínimo de dos, moléculas de isopreno. Algunos terpenoides importantes son los aceites esenciales (mentol, limoneno, geraniol), el fitol (que forma parte de la molécula de clorofila), las vitaminas A, K y E, los carotenoides (qu son pigmentos fotosintéticos) y el caucho (que se obtiene del árbol Hevea brasiliensis).

Esteroides

Colesterol; los 4 anillos son el núcleo de esterano, común a todos los esteroides
Artículo principal: Esteroide
Los esteroides son derivados del núcleo del ciclopentanoperhidrofenantreno o esterano, esto es, se componen de cuatro anillos fusionados de carbono que posee diversos grupos funcionales (carbonilo, hidroxilo) por lo que la molécula tienen partes hidrofílicas e hidrofóbicas (carácter anfipático).
Entre los esteroides más destacados se encuantran los ácidos biliares, las hormonas sexuales, las corticosteroides, la vitamina D y el colesterol. El colesterol es el precursor de numerosos esteroides y es un componente más de la bicapa de las membranas celulares.

Eicosanoides
Artículo principal: Eicosanoide
Los eicosanoides o icosanoides son un grupo de moléculas de constitución lipídica derivadas de los ácidos grasos esenciales de 20 carbonos tipo omega-3 y omega-6. Los principales precursores de los eicosanoides son el ácido araquidónico, el ácido linoleico y el ácido linolénico. Todos los eicosanoides son moléculas de 20 átomos de carbono y pueden clasificarse en tres tipos: prostaglandinas, tromboxanos y leucotrienos.
Cumplen amplias funciones como mediadores para el sistema nervioso central, los procesos de la inflamación y de la respuesta inmune tanto de vertebrados como invertebrados. Constituyen las moléculas involucradas en las redes de comunicación celular más complejas del organismo animal, incluyendo el hombre.

Funciones de los lípidos
Los lípidos desempeñan diferentes tipos de funciones biológicas:
Función de reserva energética. Los triglicéridos son la principal reserva de energía de los animales ya que un gramo de grasa produce 9,4 kilocalorías en las reacciones metabólicas de oxidación, mientras que las proteínas y los glúcidos sólo producen 4,1 kilocalorías por gramo.
Función estructural. Los fosfolípidos, los glucolípidos y el colesterol forman las bicapas lipídicas de las membranas celulares. Los triglicéridos del tejido adiposo recubren y proporcionan consistencia a los órganos y protegen mecánicamente estructuras o son aislantes térmicos.
Función reguladora, hormonal o de comunicación celular. Las vitaminas liposolubles son de naturaleza lipídica (terpenoides, esteroides); las hormonas esteroides regulan el metabolismo y las funciones de reproducción; los glucolípidos actúan como receptores de membrana; los eicosanoides poseen un papel destacado en la comunicación celular, inflamación, respuesta inmune, etc.
Función relajante. Los lípidos se acumulan en el tejido adiposo formando grandes tejidos grasosos que se manifiestan en aumento de peso en caso de sedentarismo, lo que aumenta la concentración de la hormona TRL en sangre. En la neurohipófisis, esta elevada concentración de TRL estimula la hipófisis para que inhiba la secreción hormona ACTH provocando una sensación relajamiento general del cuerpo, según los últimos estudios de la Universidad de Cabo Soho.

HIDRATOS DE CARBONO


Glucosa - forma levógira
Fructosa - forma levógira
Ribosa - forma furanosa

Los glúcidos, mal denominados hidratos de carbono o carbohidratos, son una clase básica de compuestos químicos en bioquímica. Son la forma biológica primaria de almacenamiento o consumo de energía; otras formas son las grasas y las proteínas.
El término hidrato de carbono o carbohidrato es poco apropiado, ya que estas moléculas no son átomos de carbono hidratados, es decir, enlazados a moléculas de agua, sino de átomos de carbono unidos a otros grupos funcionales químicos. Este nombre proviene de la nomenclatura química del siglo XIX, ya que las primeras sustancias aisladas respondían a la fórmula elemental Cn(H2O)n (donde "n" es un entero=1,2,3... según el número de átomos). De aquí el término "carbono-hidratado" se haya mantenido, si bien posteriormente se vio que otras moléculas con las mismas características químicas no se corresponden con esta fórmula.

Sinónimos
Carbohidrato: aunque ha habido intentos para sustituir el término de hidratos de carbono, -debido a que se descubrió que realmente también están compuestos de oxígeno, aparte de carbono e hidrógeno- desde 1996 el Comité Conjunto de la Unión Internacional de Química Pura y Aplicada (International Union of Pure and Applied Chemistry [1]) y de la Unión Internacional de Bioquímica y Biología Molecular (International Union of Biochemistry and Molecular Biology) recomienda el término carbohidrato y desaconseja el de hidratos de carbono.
Glúcido: este nombre proviene de que pueden considerarse derivados de la glucosa por polimerización y pérdida de agua. El vocablo procede del griego "glycýs", que significa dulce.
Azúcares: este término sólo puede usarse para los monosacáridos (aldosas y cetosas) y los oligosacáridos inferiores (disacáridos). En singular (azúcar) se utiliza para referirse a la sacarosa o azúcar de mesa.
Estructura química
Los glúcidos son compuestos formados en su mayor parte por átomos de carbono e hidrógeno y en una menor cantidad de oxígeno, su función es producir energía. Los carbohidratos tienen enlaces químicos difíciles de romper llamados "covalentes".
En la naturaleza se encuentran en los seres vivos, formando parte de biomoléculas aisladas o asociadas a otras como las proteínas y los lípidos.
Tipos de Glúcidos
Los glúcidos se dividen en monosacáridos, disacáridos, oligosacáridos y polisacáridos.
Monosacáridos
Artículo principal: Monosacárido
Los glúcidos más simples, los monosacáridos, están formados por una sola molécula; no pueden ser hidrolizados a glúcidos más pequeños. La fórmula química general de un monosacárido no modificado es (CH2O)n, donde n es cualquier número igual o mayor a tres. Los monosacáridos poseen siempre un grupo carbonilo en uno de sus átomos de carbono y grupos hidroxilo en el resto, por lo que pueden considerarse polialcoholes.
Los monosacáridos se clasifican de acuerdo a tres características diferentes: la posición del grupo carbonilo, el número de átomos de carbono que contiene y su quiralidad. Si el grupo carbonilo es un aldehido, el monosacárido es una aldosa; si el grupo carbonilo es una cetona, el monosacárido es una cetosa. Los monosacáridos más pequeños son los que poseen tres átomos de carbono, y son llamados triosas; aquéllos con cuatro son llamados tetrosas, lo que poseen cinco son llamados pentosas, seis son llamados hexosas y así sucesivamente. Los sistemas de clasificación son frecuentemente combinados; por ejemplo, la glucosa es una aldohexosa (un aldehido de seis átomos de carbono), la ribosa es una aldopentosa (un aldehido de cinco átomos de carbono) y la fructosa es una cetohexosa (una cetona de seis átomos de carbono).
Cada átomo de carbono posee un grupo de hidroxilo (-OH), con la excepción del primero y el último carbono, todos son asimétricos, haciéndolos centros estéricos con dos posibles configuraciones cada uno (el -H y -OH pueden estar a cualquier lado del átomo de carbono). Debido a esta asimetría, cada monosacárido posee un cierto número de isómeros. Por ejemplo la aldohexosa D-glucosa, tienen la fórmula (CH2O)6, de la cual, exceptuando dos de sus seis átomos de carbono, todos son centros quirales, haciendo que la D-glucosa sea uno de los estereoisómeros posibles. En el caso del gliceraldehido, una aldotriosa, existe un par de posibles esteroisómeros, los cuales son enantiómeros y epímeros (1,3-dihidroxiacetona, la cetosa correspondiente, es una molécula simétrica que no posee centros quirales). La designación D o L es realizada de acuerdo a la orientación del carbono asimétrico más alejados del grupo carbonilo: si el grupo hidroxilo está a la derecha de la molécula es un azúcar D, si está a la izquierda es un azúcar L. Como los D azúcares son los más comunes, usualmente la letra D es omitida.
Ciclación
El grupo aldehido o cetona en una cadena lineal abierta de un monosacárido reaccionará reversiblemente con el grupo hidroxilo sobre un átomo de carbono diferente en la misma molécula para formar un hemiacetal o hemicetal, formando un anillo heterocíclico, con un puente de oxígeno entre los dos átomos de carbono. Los anillos con cinco y seis átomos son llamados formas furanosa y piranosa respectivamente y existen en equilibrio con la cadena lineal abierta.
Durante la conversión de la forma lineal abierta a la forma cíclica, el átomo de carbono conteniendo el oxígeno carbonilo, llamado el carbono anomérico, se transforma en un centro quiral con dos posibles configuraciones: el átomo de oxígeno puede tomar una posición arriba o abajo del plano del anillo. El par de estereoisómeros resultantes son llamados anómeros. En el α-anómero, el -OH sustituyente sobre el carbono anomérico sin cuenta en el lado opuesto del anillo (posición trans) a la cadena CH2OH. La forma alternativa, en la cual el sustituyente CH2OH y el grupo hidroxilo sobre el carbono anomérico están en el mismo lado (posición cis) del plano del anillo, es llamado β-anómero. Como el anillo y la forma abierta se interconvierten, ambos anómeros existen en equilibrio.
Uso en células
Los monosacáridos son la principal fuente de combustible para el metabolismo, siendo usado tanto como una fuente de energía (la glucosa es la más importante en la naturaleza) y en biosíntesis. Cuando los monosacáridos no son necesitados para las células son rápidamente convertidos en otra forma, tales como los polisacáridos.
Disacáridos
Artículo principal:
Disacárido


Lactosa
Los disacáridos son glúcidos formados por dos moléculas de monosacáridos y, por tanto, al hidrolizarse producen dos monosacáridos libres. Los dos monosacáridos se unen mediante una enlace covalente conocido como enlace glucosídico, formado vía una reacción de deshidratación, resultando en la pérdida de un átomo de hidrógeno a partir de un monosacárido y un grupo hidroxilo del otro monosacárido,con la cose4cuente formación de una molécula de H2O, de manera que la fórmula de los disacáridos no modificados es C12H22O11.
La sacarosa es el disacárido más abundante y la principal forma en la cual los carbohidratos son transportados en las plantas. Está compuesto de una molécula de glucosa y una molécula de fructosa. El nombre sistemático de la sacarosa , O-α-D-glucopiranosil-(1→2)-D-fructofuranosido, indica cuatro cosas:
Sus monosacáridos: glucosa y fructosa.
El tipo de sus anillos: glucosa es una piranosa y fructosa es una furanosa.
Como están ligados juntos: el oxígeno sobre el carbono uno (C1) de α-glucosa está enlazado al C2 de la fructosa.
El sufijo -osido indica que el carbono anomérico de ambos monosacáridos participan en el enlace glicosídico.
La lactosa, un disacárido compuesto por una molécula de galactosa y una molécula de glucosa, estará presente naturalmente sólo en la leche. El nombre sistemático para la lactosa es O-β-D-galactopiranosil-(1→4)-D-glucopiranosa. Otro disacárido notable incluyen la maltosa (dos glucosa enlazadas α-1,4) y la celobiosa (dos glucosa enlazadas β-1,4).
Oligosacáridos [editar]
Artículo principal: Oligosacárido


Estaquiosa, tetrasacárido formado por una glucosa, dos galactosas y una fructosa
Los oligosacáridos están compuestos por entre tres y nueve moléculas de monosacáridos que al hidrolizarse se liberan. No obstante, la definición de cuan largo debe ser un carbohidrato para ser considerado oligo om polisacárido varía según los autores. Según el número de monosacáridos de la cadena se tienen los trisacáridos (como la rafinosa ), tetrasacárido (estaquiosa), pentasacáridos, etc.
Los oligosacáridos se encuentran con frecuencia unidos a proteínas, formando las glucoproteínas, como una forma común de modificación tras la síntesis proteica. Estas modificaciones post traduccionales incluyen los oligosacáridos de Lewis, responsables por las incompatibilidades de los grupos sanguíneos, el epítope alfa-Gal responsable del rechazo hiperagudo en xenotrasplante y O-GlcNAc modificaciones.
Polisacáridos [editar]


Amilopectina
Los polisacáridos son cadenas, ramificadas o no, de más de diez monosacáridos. Los polisacáridos representan una clase importantes de polímeros biológicos. Su función en los organismos vivos está relacionada usualmente con estructura o almacenamiento. El almidón es usado como una forma de almacenar monosacáridos en las plantas, siendo encontrado en la forma de amilosa y la amilopectina (ramificada). En animales, se usa el glucógeno en vez de almidón el cual es estructuralmente similar pero más densamente ramificado. Las propiedades del glucógeno le permiten ser metabolizado más rápidamente, lo cual se ajusta a la vida activa de los animales con locomoción.
La celulosa y la quitina son ejemplos de polisacáridos estructurales. La celulosa y es usada en la pared celular de plantas y otros organismos y es la molécula más abundante sobre la tierra. La quitina tiene una estructura similar a la celulosa, pero tiene nitrógeno en sus ramas incrementando así su fuerza. Se encuentra en los exoesqueletos de los artrópodos y en las paredes celulares de muchos hongos. Tiene diversos de usos, por ejemplo en hilos para sutura quirúrgica. Otros polisacáridos incluyen la callosa, la lamina, la rina, el xilano y la galactomanosa.
Función de los glúcidos [editar]
Los glúcidos desempeñan diversas funciones, siendo la de reserva energética y formación de estructuras las dos más importantes. Así, la glucosa aporta energía inmediata a los oragnismos, y es la responsable de mantener la actividad de los músculos, la temperatura corporal, la tensión arterial, el correcto funcionamiento del intestino y la actividad de las neuronas.
La ribosa y la desoxirribosa son constituyentes básicos de los nucleótidos, monómeros del ADN y del ARN.
Nutrición [editar]
Artículo principal: Nutrición
Los glúcidos en una persona ocupan de 8,3 y 14,5 g/kg de su peso corporal y el 55% de la energía diaria que necesita el organismo humano debe provenir de los carbohidratos, ya sea obtenidos de alimentos ricos en almidón como las pastas o de las reservas del cuerpo (glucógeno); se desaconseja, en cambio, el consumo de glúcidos tipo azúcar por su actividad altamente oxidante (las dietas con muchas calorías o con mucha glucosa aceleran el envejecimiento celular; se sobreentiende que sí pueden ser necesarias dietas hipercalóricas en climas gélidos o en momentos de gran desgaste energético muscular). Nótese que el sedentarismo o la falta de los suficientes movimientos cotidianos del cuerpo humano provocan una mala metabolización de las grasas y de los hidratos de carbono.
Los carbohidratos requieren menos agua para digerirse que las proteínas o grasas y son la fuente más común de energía. Las proteínas y grasas son componentes vitales para la construcción de tejido corporal y células, y por lo tanto debería ser recomendado no malgastar tales recursos usándolos para la producción de energía.
Los carbohidratos no son nutrientes esenciales: el cuerpo puede tener toda su energía a partir de las proteínas y grasas. El cerebro no puede quemar grasas y necesita glucosa para energía, del organismo puede sintetizar esta glucosa a partir de proteínas. Las proteínas contienen 4 kcal por gramo mientras que las grasas contienen 9 kilocalorías y el alcohol contiene 7 kcal por gramo.
Los alimentos que son altos en carbohidratos incluyen pastas, granos, papas, fibra, arroz y cereales.
Basado en la evidencia del riesgo a la cardiopatía y obesidad, el Instituto de Medicina (Estados Unidos) recomienda que los adultos estadounidenses y canadienses obtengan el 40 al 65% de energía de la dieta a partir de los carbohidratos. La FAO (Food and Agriculture Organization) y la WHO (World Health Organization) recomiendan que las guías de alimentación nacional establezcan la meta de 55 a 75% del total de la energía a partir de carbohidratos, pero sólo 10% de descenso a partir de azúcar libre (carbohidratos simples).
La distinción entre "carbohidratos buenos" y "carbohidratos malos" es un atributo importante de las dietas bajas en carbohidratos, las cuales promueven una reducción en el consumo de granos y almidones en favor de proteínas. El resultado es una reducción en los niveles de insulina usada para metabolizar el azúcar y un incremento en el uso de grasas para energía a través de la cetosis, un proceso también conocido como hambre de conejo.
Aplicaciones [editar]
Los hidratos de carbono se utilizan para fabricar tejidos, películas fotográficas, plásticos y otros productos. La celulosa se puede convertir en rayón de viscosa y productos de papel. El nitrato de celulosa (nitrocelulosa) se utiliza en películas de cine, cemento, pólvora de algodón, celuloide y tipos similares de plásticos. El almidón y la pectina, un agente cuajante, se usan en la preparación de alimentos para el hombre y el ganado. La goma arábiga se usa en medicamentos demulcentes. El agar, un componente de algunos laxantes, se utiliza como agente espesante en los alimentos y como medio para el cultivo bacteriano; también en la preparación de materiales adhesivos, de encolado y emulsiones. La hemicelulosa se emplea para modificar el papel durante su fabricación. Los dextranos son polisacáridos utilizados en medicina como expansores de volumen del plasma sanguíneo para contrarrestar las conmociones agudas. Otro hidrato de carbono, el sulfato de heparina, es un anticoagulante de la sangre.
Metabolismo de los glúcidos [editar]
Los glúcidos representan las principales moléculas almacenadas como reserva en los vegetales. Los vegetales almacenan grandes cantidades de almidón producido a partir de la glucosa elaborada por fotosíntesis, y en mucha menor proporción, lípidos (aceites vegetales).
Los animales almacenan básicamente triglicéridos (lípidos). Al contrario que los glúcidos, los lípidos sirven para almacenar y obtener energía a más largo plazo. También almacenan cierta cantidad de glucógeno, sobre todo en el músculo y en el hígado. Aunque muchos tejidos y órganos animales pueden usar indistintamente los glúcidos y los lípidos como fuente de energía, otros, principalmente los eritrocitos y el tejido nervioso (cerebro), no pueden catabolizar los lípidos y deben ser continuamente abastecidos con glucosa.
En el tubo digestivo los polisacáridos de la dieta (básicamente almidón) son hidrolizados por las glucosidasas de los jugos digestivos, rindiendo monosacáridos, que son los productos digestivos finales; éstos son absorbidos por las células del epitelio intestinal e ingresan en el hígado a través de la circulación portal, donde, alrededor del 60%, son metabolizados. En el hígado, la glucosa también se puede transformar en lípidos que se transportan posteriormente al tejido adiposo.
El músculo es un tejido en el que la fermentación representa una ruta metabólica muy importante ya que las células musculares pueden vivir durante largos períodos de tiempo en ambientes con baja concentración de oxígeno. Cuando estas células están trabajando activamente, su requerimiento de energía excede su capacidad de continuar con el metabolismo oxidativo de los hidratos de carbono puesto que la velocidad de esta oxidación está limitada por la velocidad a la que el oxígeno puede ser renovado en la sangre. El músculo, al contrario que otros tejidos, produce grandes cantidades de lactato que se vierte en la sangre y retorna al hígado para ser transformado en glucosa.
Por lo tanto las principales rutas metabólicas de los glúcidos son:
Glicólisis. Oxidación de la glucosa a piruvato.
Gluconeogénesis. Síntesis de glucosa a partir de precursores no glucídicos.
Glucogénesis. Síntesis de glucógeno.
Ciclo de las pentosas. Síntesis de pentosas para los nucleótiods.
En el metabolismo oxidativo encontramos rutas comunes con los lípidos como son el ciclo de Krebs y la cadena respiratoria.
La principal hormona que controla el metabolismo de los hidratos de carbono es la insulina.